Has COVID-19 Testing Made the Problem Worse?

Concerns about the virus SARS-COV-2 that causes the disease called COVID-19 have centered around reported mortality rates. However, errors in reporting those rates have led to confusion regarding the true health impacts. Because estimated rates are dependent on the test used to identify infected patients, understanding that test and its history could lead to much needed clarity.

Errors in reported mortality rates have come from mistakes in calculation. An example has been equating the measured case fatality rate (deaths divided by patients actively infected) with the actual mortality rate (deaths divided by patients who were ever infected). The latter number is unknown and will not be known until antibody titers can be performed to see who has previously been infected. But that actual mortality rate is expected to be much lower, perhaps around 0.3% as estimated by an epidemiologist from Stanford University.

Another common error has been attributing the deaths of all infected people to COVID-19, regardless of other pre-existing illnesses. This error has been magnified by governments mandating that all deaths of presumptive patients be listed as death from COVID-19, even if the patient was never tested for SARS-COV-2 at all.

The mortality rate errors would be further worsened if there were errors in testing for presence of the virus. What is becoming increasingly clear is that there have been serious questions regarding the reliability of that testing.

The test in question uses a technique called reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) to identify the presence of RNA from SARS-COV-2. Testing follows different protocols in different countries and the first problem was seen in China, the reported origin of the virus.

The Chinese Mystery

A scientific study was performed in China that targeted subjects who had been in close contact with SARS-COV-2 infected patients. The results were peer-reviewed and published in the Chinese Journal of Epidemiology on March 5th, 2020. The data-driven conclusion of the study was that “nearly half or even more” of patients testing positive for SARS-COV-2 did not actually have the virus. In other words, half of the results were false positives.

For perspective, this study was peer-reviewed and published in a Chinese state journal a month after COVID-19 was said to have surpassed the 2003 SARS epidemic and just as the World Health Organization (WHO) declared the outbreak to be a pandemic. This was a full month after China had ordered a lockdown affecting over 36 million people.

Mysteriously, this peer-reviewed study was withdrawn a few days after publication and is no longer available for review. In response, one investigative team asked a Chinese graduate student to contact the lead author of the study, Dr. GH Zhuang, for explanation. Dr. Zhuang responded by email but did not cite a reason for withdrawal of the paper, only saying that it was “a sensitive matter.” Others then made the false assumption that the author had identified a mistake in the science despite the fact that no such mistake was ever identified.

As reported by the investigative team that contacted Dr, Zhuang, “Without access to the paper, nobody can assess the value of the work or determine whether it suffers from a scientific flaw. It’s also unknown if the paper was retracted for political reasons.”

To understand the concept of a false positive one should realize that analytical test methods need to be balanced with respect to quality considerations like sensitivity and specificity. If a test is not sensitive enough, the analyte of interest will not be found when it is there, giving a false negative. If a test is not specific enough, something else in the test sample will be identified as being the target analyte when it is not, giving a false positive.

In this case, a false positive could mean that the test is reacting to another virus or genetic source. Alternatively, the test could be detecting the presence of SARS-COV-2 residues after a previously infected individual is no longer sick. Lastly, even very small amounts of contamination in the laboratory can cause a false positive. No matter the cause, false positives mean higher reported mortality rates, more confusion, more fear, and more bad decisions.

The RT-qPCR test for SARS-COV-2 is being used as a qualitative test, despite the technique name including the word quantitative. This means that the actual amount of virus in a sample is not considered important, only the presence of even a small amount of virus. This concern would be lessened if the actual test results showing levels of virus detected were available. Unfortunately, all the public sees are numbers of positive or negative determinations.

WHO Guidance and the Test

The World Health Organization (WHO) originally based testing on a kit developed in Germany, not on the Chinese protocol. WHO has since developed general guidance for testing SARS-COV-2. This guidance requires some understanding of terminology so it’s helpful to understand the virus and the principle of testing.

RT-qPCR involves multiple steps. The sample is first lysed (i.e. the cells are cut) to release any viral material. Then the target RNA is converted into complementary DNA (cDNA) using an enzyme called reverse transcriptase. This is sometimes called the “extraction” step. After this, the cDNA is used as a template for amplification using qPCR, allowing the original quantity of target RNA to be determined.

The amplification is not done on the entire cDNA sequence but on segments that are expected to be representative of the specific genome of interest and, correspondingly, not representative of other genetic materials that could be present. Segments of the SARS-COV-2 genetic code that are usually targeted correspond to sections of the original RNA named ORF1a, ORF1ab, S, M, E, and N.

Synthetic primers and fluorescent probes are identified to match up with the target genetic segments to facilitate amplification and detection. The primers are small nucleotide sequences that bind to the target segments of the cDNA genetic sequence. The primers used are critical and issues with primer design can lead to variation in results.

As described in an article in The Scientist, the WHO-recommended primers first target the E gene of SARS-COV-2. The E gene is considered highly divergent and therefore more specific to the different coronaviruses. If a lab following WHO guidance obtains a positive screening test, it will do confirmatory testing targeting other areas of the virus genome. To avoid false positives, “every positive test has been confirmed with whole genome sequencing, viral culture, or electron microscopy.”

The U.S. Test

Unfortunately, the U.S. decided to follow its own rules for testing of SARS-COV-2. In fact, WHO and CDC never discussed the U.S. using the same test as being done internationally. Investigators from The Scientist found that it was “not clear why the CDC chose to develop a different assay to that selected by the WHO and taken up by other countries. The CDC declined to respond to questions.”

The CDC was criticized for its decision and problems were later found with its test kits. Although CDC has been secretive about the details, the concerns with its test appear to have included both test design issues and contamination.

CDC began manufacturing its test kit in January and shipped it on February 5th to state labs and to 30 other countries including 191 international labs. A week later, in a February 12th briefing at the CDC, problems with the test were reported. Although the statements made were unclear, it appeared that states were complaining the test was “inconclusive” and therefore CDC was going to focus on “redoing the manufacturing.”

It was reported that, “the CDC added to the confusion by providing limited information to labs in the weeks that followed. There was a period of time after the tests were recalled where there was near silence. It was about two weeks.” It was only after an open letter to Congress on February 28th, from more than 100 virologists and other specialists, that the CDC responded by allowing independent labs that had validated their own tests to begin testing.

The CDC test originally included three primers, all targeting one gene—the N gene of SARS-COV-2 that encodes for the nucleocapsid. The primers were denoted N1, N2, and N3. Nucleocapsids of RNA viruses “are fairly simple structures that contain only one major structural protein…This protein is usually basic or has a basic domain.”

Although the CDC test might have provided good sensitivity, it appears that it did not provide high specificity as it targeted only one basic gene of the coronavirus. CDC admitted the lack of certainty in a disclaimer noted in the method, saying, positive results “do not rule out bacterial infection or co-infection with other viruses. The agent detected may not be the definite cause of disease.”

At first, due to CDC secrecy, problems with the test kit were difficult to understand. As the Washington Post reported, “The trouble with the CDC test arose because the third attempt at a match, known as the N3 component, produced an inconclusive result even on known samples of the coronavirus.”

But that was not the whole story.

On February 28th, as the open letter to Congress was being recognized, it was reported that the N3 primer of the CDC kit was contaminated. The contamination caused the negative control within the kit, containing DNA that was unrelated to SARS-COV-2, to react as if it was a positive hit for SARS-COV-2. In other words, the kits were generating false positives for negative controls.

How much contamination was present was not clear because, again, the actual test results giving amounts of virus found are not available to the public. And CDC has not been open with communications about the problems found. Oddly enough, in April, test kits in the UK were also found to be “contaminated with COVID-19.”

What did CDC do to correct the problems with the kit? Instead of re-manufacturing the N3 primer as originally planned, on March 15th the CDC simply told everyone who had the kit to remove the N3 primer and use the kits without it. Additionally, CDC changed its method requirements to eliminate the need to confirm positive results. This made the test kit that was based on detection of only one basic gene in SARS-COV-2 even less specific and told users that results didn’t need to be confirmed. These changes made the test less reliable in terms of identifying SARS-COV-2 and therefore made any subsequent estimates of mortality rates less reliable as well.


The history of testing for SARS-COV-2 infection has involved problems that have led to delays in testing and reporting of rates of infection than are falsely higher than actual. Complicating these issues are government mandates for medical professionals to list COVID-19 as cause of death for patients who have inconclusive causes of death and, in some cases, were never tested for SARS-COV-2 at all.

Understanding problems with the test performed for identification of infected patients can lead to much needed clarity and less panic. There are many questions that still need answers. For example: Are reported rates for other diseases like influenza dropping in proportion to the rise in reported infection by SARS-COV-2? What were the details of the Chinese study that was mysteriously retracted? What has investigation into the CDC kit contamination revealed? What other countries have based their mortality figures on test kits that provided unreliable results?

Citizens can help by calling on authorities and test facilities to publicly share the details of testing including the actual results of the RT-qPCR tests showing levels of virus present. In addition to information sharing, an international investigation into the problems seen with testing, starting with Chinese results and U.S. test kits, should be conducted. Such an investigation could lead to preventing the reporting of false positives and the ensuing panic and bad decision making that come from artificially high estimated mortality rates.

This entry was posted in COVID-19 and tagged , , . Bookmark the permalink.

8 Responses to Has COVID-19 Testing Made the Problem Worse?

  1. Tim W says:

    What’s amazing to me about this writing is the level of detailed understanding of qPCR the author worked to achieve, combined with the completely mistaken notions about how this technique relates to diagnostics. There’s no conspiracy here, and any suggestion to the contrary is a red herring.

    • Kevin Ryan says:

      I’m glad you were impressed with the knowledge level. Other than that, your comment contained so much misinformation and so many bad assumptions that it is best that I clarify a bit for you.
      The reason I was able to “learn” about the testing is that I’m the director of labs that do RT-qPCR regularly. And our labs deal with false positive issues on those tests, although perhaps not as glaringly obvious of problems as presented by the CDC’s SARS-COV-2 test.
      As stated in the article the CDC kit is designed poorly, targeting only one gene and now requiring no confirmation of positive results. The kit started with three markers for the N gene, named N1, N2, and N3. When states complained about the test being inconclusive, the CDC simply eliminated N3, reducing the targets to only two and still only for one gene. That gene is highly conserved across coronavirus species and is therefore not very specific to SARS-COV-2.
      But apart from coronaviruses, the CDC primers have been proven to be even less specific using a Western Blot analysis. As you can see in this image, the primers are not specific to coronaviruses, reacting to mock samples that are not representative of these viruses. The mock samples in this case are uninfected A549 cells (adenocarcinomic epithelial basal cells) that should not be reacting as if they were infected with SARS-COV-2.
      Therefore the problem is quite straightforward and of enormous importance to reducing the panic and resulting bad decision making that will ultimately kill far more people than the virus ever would.
      False Positivse for SARS-COV-2

  2. Allen says:

    Has anyone looked at the CDC Flu Surveillance reports? These reports are weekly and they have been doing them for 20 years now. Without going into them into too much detail here are some recent anomalies that are quite striking- not sure what to make of them.

    Historically and almost without exception the flu positive numbers are at their highest around Jan/Feb and taper off gradually- you know flu season.

    Putting aside how the flu is categorized by the CDC what one finds is that here in the last three weeks flu positives are at an overall and unprecedented low. In Weeks 12,13,14 (the latest reported) those positive specimen percentages for the flu went 6.9%, 2.1% and 0.8% respectively. This after all time highs in weeks 6,7,8 of 30.8%, 29.6% and 26.4% respectively.

    I examined the CDC flu data going back 10 years and never in this time frame had they ever recorded a flu positive percentage under 10 percent. And in EVERY single year and week up until this year the taper was gradual as it would descend in say Week 6 from 24% to 18% by Week 14- for example.

    The drop off after Week 11 this season was off a cliff- and here we are in Week 14 at 0.8%? That’s simply not possible no matter how many schools are closed, “social distancing” measures are in place and so forth.

    I’ve charted all of this data for the last 10 years- Weeks 6-14- and when you see it in graphs the statistical deviation of the last 3 weeks of flu positives as recorded by the CDC is jaw dropping- we are talking about an aberration of 600-900 percent- that is not a typo.

    On average Week 14 flu positives over the last 10 years have been 13.5% and this year it is at 0.8% in Week 14? That’s simply not possible.

    What gives?

    The CDC also states this on their site:

    “Nationally, influenza activity is now low.

    With ongoing declines in influenza activity and the continued effects of the COVID-19 pandemic, FluView will be abbreviated for the remainder of the 2019-2020 season.”

    In short it seems the CDC is no longer going to be charting flu data and will focus (replace?) on COVID data in it’s stead. Has the flu been disappeared?

  3. Angus says:

    Brilliant article. This whole thing is exposing conspiracy denial, like the Epstein case.

  4. geeyp says:

    We have a mouthpiece for Mayor Eric Garcetti in Los Angeles stating another three months of lockdown. This gets into the nitty gritty on the ground of the effects on the country from worthless individuals like Garcetti calling the shots. Not a good sign. Not practical when President Trump says the country is not open until schools are in session. So we have a major conflict again here. I, for one, side with the President on this issue. This whole idea of Covid-19 ruling our comings and goings is appalling. It looks like we have “Another Nineteen”, Kevin.

  5. VN Alexander says:

    The critique of the European test by INTERNATIONAL CONSORTIUM OF SCIENTISTS IN LIFE SCIENCES (ICSLS) published Nov 27 states that the N gene is the most unique, quoted below. The European test does not focus on the N gene. What do you make of ICSLS’s criique?

    SARS-CoV1 and SARS-CoV-2 have two highly specific genetic fingerprints, which set them apart from the other coronaviruses. First, a unique fingerprint-sequence (KTFPPTEPKKDKKKK) is present in the N-protein of SARS-CoV and SARS-CoV-2 [13,14,15]. Second, both SARS-CoV1 and SARS-CoV2 do not contain the HE protein, whereas all other coronaviruses possess this gene [13, 14]. So, in order to specifically detect a SARS-CoV1 and SARS-CoV-2 PCR product the above region in the N gene should have been chosen as the amplification target. A reliable diagnostic test should focus on this specific region in the N gene as a confirmatory test. The PCR for this N gene was not further validated nor recommended as a test gene by the Drosten-Corman paper, because of being “not so sensitive” with the SARS-CoV original probe [1].

    • Kevin Ryan says:

      The nucleocapsid is not the most unique gene within coronaviruses as it encodes for the inner capsid (highly conserved) and other genes code for the ore specific external envelope proteins (S, E), among other things. I’ll have a close look at this particular claim when I have a chance. Thanks, KR

  6. Werner says:

    Brilliant article. Thank you. Just to remind: “This means that the actual amount of virus in a sample is not considered important, only the presence of even a small amount of virus.”

    There is no detection of a virus in the sample, just the detection of a gene sequence of SarsCov2. This means gene sequence detection of genetic material, without knowledge if there is infectious virus.

    Secondly if only one gene sequence is detected, (especially for the e-gene), then one gets regularly positive results with ct values (or amplifications) over 30. In addition the e-gene (envelope gene ) is also found in other coronaviruses, not only in SarsCov2.

    The detection of only one gene together with high ct values (regularly over 30) was performed in many labs in this world and gave (and probably gives ) regularly false positive results.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s